Bomba de nêutrons
Origem: Wikipédia, a enciclopédia livre.
A bomba de nêutrons é a última variante da bomba atômica. Em geral, é um dispositivo termonuclear pequeno, com corpo de níquel ou cromo, onde os nêutrons gerados na reação de fusão intencionalmente não são absorvidos pelo interior da bomba, mas se permite que escapem. As emanações de raios-X e de nêutrons de alta energia são seu principal mecanismo destrutivo. Os nêutrons são mais penetrantes que outros tipos de radiação, de tal forma que muitos materiais de proteção que bloqueiam raios gama são pouco eficientes contra eles. A bomba de nêutrons tem ação destrutiva apenas sobre organismos vivos, mantendo, por exemplo, a estrutura de uma cidade intacta. Isso pode representar uma vantagem militar, visto que existe a possibilidade de se eliminar os inimigos e apoderar-se de seus recursos.
Índice[esconder] |
[editar] Poder destrutivo
Os efeitos de uma explosão nuclear podem ser divididos nas categorias: a explosão propriamente dita, a radiação térmica, a radiação nuclear direta e a indireta.
[editar] A explosão
A explosão consiste em uma onda de choque que se espalha na forma de uma esfera com raio crescente. Esta onda de choque nada mais é do que uma oscilação da pressão do ar, ou seja, um aumento seguido de uma diminuição, ambos muitos rápidos. Por exemplo, a uma distância de 1 km, uma explosão de uma bomba atômica (fissão nuclear) de 20 kiloton provoca uma variação na pressão da ordem de uma atmosfera. Isso é suficiente para destruir construções de concreto, como casas e prédios. Uma bomba termonuclear (fusão nuclear), pode chegar a até 10 megaton (= 10.000 kiloton). 1 kiloton significa 1.000 toneladas de explosivo TNT (trinitro-tolueno), o que equivale a 1012 calorias, ou 4.184 × 1012 J de energia. A densidade de energia que a onda de choque carrega diminui com o inverso do quadrado da distância (1/r²), por um fator puramente geométrico. A 2 km de distância, a mesma bomba atômica provoca uma onda de choque com uma variação de 0,25 atmosferas, o que é suficiente para destruir casas de madeiras e atirar escombros a mais de 360 km/h.
[editar] A radiação térmica
O outro efeito destruidor das armas nucleares é o calor que ela libera. Este, porém sofre mais diminuição do que a onda de choque. Pois além do fator geométrico 1/r² ainda há a absorção e espalhamento da radiação térmica pelo meio. Mesmo assim, a 2 km de distância, uma bomba atômica de 20 kilotons ainda provoca queimaduras de terceiro grau nas pessoas e é capaz de incendiar materiais inflamáveis como madeira e tecidos. No local da explosão, a bola de fogo se forma tão rapidamente que provoca ventos de 180 a 360 km/h, o que espalha mais ainda o incêndio causado. Este efeito não é uma exclusividade das bombas nucleares. Estas apenas têm uma maior intensidade. Novamente, para se ter uma idéia, com uma única bomba termonuclear (fusão nuclear) é possível, considerando os dois efeitos já descritos, destruir completamente uma área circular com raio de 10 km. Com uma explosão nuclear, nêutrons e radiação g são emitidos. Ambos decrescem com 1/r2 e a distância na qual são letais é a mesma para as ondas de choque e térmica. Os efeitos desta radiação são o aparecimento de várias doenças, como tipos variados de câncer e modificações genéticas. Estas modificações se devem a troca das bases nitrogenadas na seqüência da molécula do DNA (ácido desoxirribonucléico).
[editar] A radiação nuclear direta
Um outro efeito exclusivo de bombas atômicas é devido aos elementos radioativos que são liberados na explosão. Eles são vaporizados devido ao calor liberado e vão para a atmosfera formando nuvens carregadas com elementos radiativos, as chamadas nuvens radiativas. Estas podem circular durante anos. Nas chuvas, estes elementos caem e se infiltram no solo, entrando em contato com o lençol freático. Quando essa água é absorvida pela vegetação, os elementos radiativos vão junto. Em seguida esses elementos podem chegar ao organismo do homem de várias maneiras diferentes. Uma delas é o homem ingerir diretamente alimentos vegetais contaminados. Outra, é o homem comer carne de animais que se alimentaram de vegetação contaminada. Uma vez os elementos estando no corpo humano, ele vai se acumulando, pois não é liberado. Cada elemento pode ter um efeito danoso particular. O 90Sr (estrôncio) por exemplo é muito similar ao cálcio. Devido a isso, ele se acumula facilmente no tecido ósseo do corpo humano. Assim, a pessoa fica com o esqueleto extremamente fraco e debilitado, podendo quebrar algum osso muito facilmente, além de ficar muito propenso a ter câncer nesses tecidos. Eliminando o material físsil de uma bomba termonuclear, é possível fazer uma bomba com uma explosão limpa, que não provocará chuva radioativa no futuro, e seus efeitos nocivos.
[editar] A radiação nuclear indireta
Podemos ainda citar outro efeito exclusivo de bombas nucleares. Além da radiação g, há uma grande emissão de raios X. Essas duas radiações interagem com as moléculas da atmosfera (por efeito Compton e ionização) criando uma grande corrente de elétrons que se espalha a partir do ponto de explosão. Estes elétrons são acelerados pelo campo magnético da Terra gerando ondas eletromagnéticas na forma de um pulso. Tal pulso pode gerar um colapso na rede elétrica de uma cidade impossibilitando qualquer uso de energia elétrica. Esse é o chamado efeito PEM (pulso eletromagnético).
[editar] As Bombas de Nêutrons
Uma outra classe de bombas nucleares não apresenta efeitos explosivos, como destruição de construções de concreto, etc. São as bombas de nêutrons. Eliminando o 238U, essas bombas 'reduzem' o seu poder para a faixa dos kilotons. Quando ativadas, elas produzem um intenso feixe de nêutrons, que carregam uma dose letal de radiação. Estima-se que uma bomba de nêutrons de 1 kiloton sujeita o homem, protegido com colete, a uma distância de 1 km a uma dose de 103 rads. Isso é suficiente para matar em um prazo de poucos dias. Essas bombas de nêutrons tiveram um objetivo específico quando projetadas. Por exemplo, se um exército inimigo invadir um território, uma bomba de nêutrons poderia ser detonada, matando todo o contingente inimigo, porém, deixando intacto as construções (prédios, casas, etc). Pois já que, por outro lado, uma bomba termonuclear normal destruiria todo o território, ao invés de salvá-lo.
[editar] História
A bomba de nêutrons geralmente é creditada a Samuel Cohen do Laboratório Nacional Lawrence Livermore, que desenvolveu o conceito em 1958. Embora inicialmente contrária pelo Presidente John F. Kennedy, a sua prova foi autorizada e levada a cabo em 1963 em uma instalação de testes subterrânea em Nevada.[1] O seu desenvolvimento foi adiado subseqüentemente pelo Presidente Jimmy Carter em 1978 devido aos protestos partidários contra os planos da sua administração para desenvolver ogivas de combate de nêutrons na Europa. O Presidente Ronald Reagan reiniciou a produção em 1981.[2]
Três tipos foram construídos pelos Estados Unidos :[3] O W66 ogiva de combate para o sistema de míssil anti-ICBM Sprint que foi produzido e desenvolvido na metade dos anos setenta e se encerrou logo depois disso junto com o sistema de míssil. O W70 Mod 3 ogiva de combate foi desenvolvido para o míssil de alcance limitado, tático Lance, e o W79 Mod 0George Bush (pai) em 1992 devido ao fim da Guerra Fria.[4] [5] O último modelo, W70 Mod 3 ogiva de combate foi desmantelado em 1996 [6], e a última bomba de nêutron restante (W79 Mod 0) foi desmantelada em 2003 quando do desmantelamento de todas as classes de W79 foi completada. [7]. foi desenvolvido para baterias de artilharia. Os dois tipos posteriores foram encerrados pelo Presidente
A França testou uma bomba de nêutrons no Atol de Moruroa em 24 de junho de 1980. Armas de radiação ampliadas também foram produzidas pela França nos primeiros anos de 1980, entretanto eles destruíram estas armas depois dessa época. O "Cox Report de 1999" informou que a China poderia produzir bombas de nêutrons,[8] e que Israel desenvolveu bombas de nêutrons em 1996, embora não se conheça nenhum País onde estejam sendo desenvolvidas atualmente tais bombas.
[editar] Avaliação técnica
Uma bomba de nêutrons, ou bomba de radiação aumentada (arma ER), é uma arma de fissão-fusão termonuclear na qual a explosão de nêutrons livresfusão Nuclear não é absorvida intencionalmente dentro da arma, mas permitindo o escape. Os espelhos de Raios-X e a armadura da arma são feitas de cromo ou níquel de forma que os nêutrons possam escapar. Compare isto com as bombas de cobalto , também conhecidas como bombas de salto (gatilhos). gerada pela reação da
Bombas de nêutrons têm baixo rendimento comparadas com outras armas nucleares. Isto é porque os nêutrons são absorvidos pela via aérea, assim uma bomba de nêutrons de “alto rendimento” não poderia irradiar nêutrons além da sua gama de explosão e assim não teria nenhuma vantagem destrutiva sobre uma bomba de hidrogênio normal. Note que usar o rendimento explosivo de uma arma de nêutrons para medir o seu poder destrutivo pode ser enganoso : a maioria dos danos produzidos por uma arma de nêutrons vem da radiação ionizante, não do calor e explosão.
Este intenso estouro de nêutrons de alta-energia é planejado como o mecanismo principal de matar, embora uma ampla quantia de calor e explosão também seja produzida. Uma idéia comum é que uma "bomba de nêutrons deixa a infra-estrutura intacta"; porém, projetos atuais têm aumentado no kiloton range ( Tabela de Kilotons ),[9] cuja detonação poderia causar destruição pesada por explosão e efeitos de calor. Um aumento de um kiloton não é muito para uma arma nuclear, mas é próxima a duas ordens de magnitude (100x) maior que as mais poderosas bombas convencionais. A explosão de uma bomba de nêutrons pode o ser bastante para aniqüilar quase toda a estrutura civil dentro da radiação letal percorrida.[5]
Um dos usos para os quais esta arma foi concebida é amplo principalmente como armamento antitanque. Veículos blindados oferecem um grau relativamente alto de proteção contra calor e explosões, os efeitos destrutivos primários libertados por armas nucleares " normais ". Isto significa que é esperado que o pessoal militar sobreviva a uma explosão nuclear de pequena intensidade dentro de um tanque, enquanto os veículos NBC dos sistemas de proteção asseguram um grau alto de operabilidade igual em um ambiente de desavença nuclear.
É esperado que as armas de ER possam matar uma porcentagem muito mais alta do pessoal inimigo dentro dos seus tanques libertando uma porcentagem muito mais alta do rendimento total na forma de radiação de nêutrons contra a qual mesmo um tanque blindado não protege muito bem.
O termo " radiação aumentada " só recorre a explosão da radiação de nêutronsdetonação, não para qualquer aumento da radiação residual como efeito colateral. liberada no momento da
Uma bomba de nêutrons requer quantias consideráveis de tritium que têm uma meia-vida de 12.3 anos, compondo as dificuldades de armazenamento prolongado. O tritium teria que ser substituído periodicamente, e o tritium anterior ser processado para remover os produtos da sua decadência.
[editar] Táticas das Bombas de Nêutrons
Bombas de nêutrons poderiam ser usadas como armas estratégicas em projéteis anti-balísticos ou como armas táticas direcionadas para o uso contra forças blindadas; na realidade, a bomba de nêutrons foi concebida originalmente como uma arma que poderia parar qualquer divisão blindada da União Soviética em uma invasão na Europa Oriental sem destruir a Europa Ocidental nesse processo.
Como uma arma míssil antibalística, um ogiva de combate ER foi desenvolvida para o sistema de Míssil de curta distância Sprint como parte do Programa de Proteção para proteger as cidades dos Estados Unidos da América e silos de mísseis contra o ataque de ogivas de combate da União Soviética danificando os seus componentes eletrônicos com o intenso fluxo de nêutrons.
Como Bomba Tática atômica, espera-se que bombas de nêutrons matem principalmente os soldados que estejam protegidos através de blindagens. Os Veículos blindados que são extremamente resistentes a explosão e calor produzidos por armas nucleares, assim a gama efetiva de uma arma nuclear contra tanques é determinado pela gama letal da radiação ionizante, embora isto também seja reduzido pela blindagem. Emitindo amplas quantias de radiação letal do tipo mais penetrante, as ogivas de combate ER maximizam a gama letal do rendimento de determinadas ogivas de combate nuclear contra alvos blindados.
Um problema ao se usar a radiação como uma arma anti-pessoal tática é o fato de provocar a morte rápida dos indivíduos em seu alcance, uma dose de radiação que é muitas vezes superior ao nível letal é liberada. Uma dose de radiação de 6 Gy é normalmente considerada letal. Matará pelo menos a metade daqueles que são expostos a isto, mas nenhum efeito é notável durante várias horas. Foram desenvolvidas bombas de nêutrons com a capacidade de 80 Gy para aniquilar os alvos depressa. Uma ogiva de combate ER de 1 kt pode fazer isto com a tripulação de um tanque T-72 em um raio de 690 m, comparado a 360 m para uma bomba de fisão Nuclear. Para uma dose de 6 Gy, as distâncias são respectivamente 1.100 m e 700 m, e para soldados desprotegidos as exposições de 6 Gy ocorrem entre 1.350 e 900 metros. O raio letal para bombas de nêutrons táticas excede ao raio letal para as de explosão e calor mesmo para tropas desprotegidas que levam ao provável raciocínio para a idéia que uma bomba de nêutrons destrói somente (?) a vida e não a infra-estrutura. Se uma bomba de nêutrons for detonada à altitude correta, níveis mortais de radiação cobririam uma larga área com mínimo calor e efeitos de explosão quando comparados a uma bomba.
O fluxo de nêutrons pode induzir grandes quantias de radioatividade secundária de vida-curta no ambiente da região de alto fluxo perto do ponto de detonação. As ligas usadas em armadura de aço podem desenvolver a radioatividade e isso é perigoso durante 24-48 horas. Um tanque exposto a uma bomba de nêutrons de 1 kt a 690 m ( o raio efetivo para a incapacitação imediata da tripulação ) que seja imediatamente ocupado por uma nova tripulação, submeterá esta a uma dose letal de radiação por 24 horas.
Uma desvantagem importante da arma é que nem todos os atingidos falecerão ou se incapacitarão imediatamente. Depois de um breve período de náuseas, muitos daqueles atingidos com aproximadamente 5-50 Sv de radiaçãofase de fantasma ambulante" [10]) por dias, até duradouras semanas. experimentarão uma recuperação temporária (oculta ou"
FONTE: Wikipédia, a Enciclopédia Livre.
Nenhum comentário:
Postar um comentário